Generalized D-Forms Have No Spurious Creases
نویسندگان
چکیده
A convex surface that is flat everywhere but on finitely many smooth curves (or seams) and points is a seam form. We show that the only creases through the flat components of a seam form are either between vertices or tangent to the seams. As corollaries we resolve open problems about certain special seam forms: the flat components of a D-form have no creases at all, and the flat component of a pita-form has at most one crease, between the seam’s endpoints. Partially supported by NSF CAREER award CCF-0347776, DOE grant DE-FG02-04ER25647, and AFOSR grant FA9550-07-1-0538. Partially supported by an NSF Graduate Fellowship.
منابع مشابه
Applications of quadratic D-forms to generalized quadratic forms
In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.
متن کاملBifurcation Diagrams for the Formation of Wrinkles or Creases in Soft Bilayers
Subject to compression, elastic materials may undergo bifurcation of various kinds. A homogeneous material forms creases, whereas a bilayer consisting of a stiff film and a compliant substrate forms wrinkles. Here, we show several new types of bifurcation behavior for bilayers consisting of films and substrates of comparable elastic moduli. Depending on the ratios of moduli and thicknesses of t...
متن کاملRobust Crease Detection in Fingerprint Images
In this paper, we study a novel pattern in the fingerprint called crease, a kind of stripes irregularly crossing the normal fingerprint patterns (ridges and valleys). Creases will cause spurious minutiae by using conventional feature detection algorithm, and therefore decrease the recognition rate of fingerprint identification. By representing the crease using a parameterized rectangle, we desi...
متن کاملGeneralized sigma-derivation on Banach algebras
Let $mathcal{A}$ be a Banach algebra and $mathcal{M}$ be a Banach $mathcal{A}$-bimodule. We say that a linear mapping $delta:mathcal{A} rightarrow mathcal{M}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{A} rightarrow mathcal{M}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{A}$. Giving some facts concerning general...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 43 شماره
صفحات -
تاریخ انتشار 2010